a2 United States Patent

Maity et al.

US009158628B2

US 9,158,628 B2
Oct. 13, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)
(52)

(58)

BIOS FAILOVER UPDATE WITH SERVICE
PROCESSOR HAVING DIRECT SERIAL
PERIPHERAL INTERFACE (SPI) ACCESS

Applicant: AMERICAN MEGATRENDS, INC.,
Norcross, GA (US)
Inventors: Sanjoy Maity, Snellville, GA (US);
Baskar Parthiban, Johns Creek, GA
(US); Satheesh Thomas, Norcross, GA
(US); Purandhar Nallagatla, Johns
Creek, GA (US); Ramakoti Reddy
Bhimanadhuni, Suwanee, GA (US);
Harikrishna Doppalapudi, Norcross,
GA (US)
Assignee: AMERICAN MEGATRENDS, INC.,
Norcross, GA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 146 days.

Appl. No.: 14/092,489

Filed: Nov. 27, 2013
Prior Publication Data
US 2015/0149815 Al May 28, 2015
Int. CI.
GOGF 11/14 (2006.01)
U.S. CL
CPC e, GO6F 11/1435 (2013.01)
Field of Classification Search
CPC GOG6F 11/1435; GO6F 11/1451; GO6F

11/1471; GOGF 11/1464; GOGF 11/1666;

GOGF 11/1417, GOG6F 11/1433; GOGF 11/20;
GOGF 11/073; GOG6F 11/076

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,944,758 B2* 9/2005 Lincccooiiviiiiiininn 713/2
7,043,666 B2* 52006 Wynnetal. . .. 714/6.13
7,765,393 B1* 7/2010 Leeetal.ccconiin. 713/2
2003/0076311 Al* 4/2003 Linetal. 345/204
2004/0153738 Al* 82004 Otakaetal ... 714/6
2004/0193862 Al* 9/2004 Linccoivviiiinininnn. 713/1
2015/0081829 Al* 3/2015 Maity et al. . .. 709/212
2015/0143095 Al* 5/2015 Maityetal. ... 714/15
2015/0149750 Al1* 5/2015 Maityetal. ... 714/15

* cited by examiner

Primary Examiner — Nadeem Igbal
(74) Attorney, Agent, or Firm —Locke Lord LLP; Tim
Tingkang Xia, Esq.

(57) ABSTRACT

Certain aspects direct to systems and methods of BIOS
failover update with a service processor (SP) having direct
serial peripheral interface (SPI) access to a basic input/output
system (BIOS) chip of a host computer. In certain embodi-
ments, the SP receives a failover backup image from a BIOS
being executed at a CPU of the host computer through a
system interface, and stores the failover backup image in the
volatile memory. Then the SP monitors operation of the BIOS
by receiving, from the BIOS, a notification signal. When the
SP detects an error in the operation of the BIOS based on the
notification signal, the SP sends a copy of the failover backup
image to the BIOS chip of the host computer through the SPI
to replace a current BIOS image stored in the BIOS chip of the
host computer with the copy of the failover backup image.

29 Claims, 6 Drawing Sheets

%

18
9%

100
Host Computer J

160

12
1

™ Storage Device

118
%

158

=

e

L
150 155
KCS use
Interface Interface 120

2

180
1
182 ™

Processor

Service Processor

. ct. 13, 5 heet 1 0 . .
U.S. Patent Oct. 13, 201 Sheet 1 of 6 US 9,158,628 B2
~U% 100
1
1 EE/-\ Host Computer J
16{‘&/\ _ §to_ra§e_£>§viﬁe_ _
N oS I
112 e o o o o o - - - - -
“N S8
CPU Memory /
1186
A\
\ BIOS Chip v
r ----------
‘/\ e e e BN
L _ [Pl Applcetion _ ¥
—————————— = /\1/?4
L _ FlasherModue _ 14
15 KCS USE 155
\/—\ interface interface /\1;()
/\J
180
o
e | ﬂ-’-‘-’-’-’-’-’-’-’-’, ! 128
A~ 1L EiGs Uidaie e 1L
190 | N ——ceeccca=a- |
N Waichdog Module || 124
™ \=========z)i /1
\|LI IPMI Module "
__ _Ffimware _ _)
Non-Volatile Memory
185
~TN Memory \1/22
N— =SS o=—— - |/
Lo Di0Simage |
N
Processor /
Service Processor

FIG. 1

U.S. Patent

Oct. 13, 2015

2

Sheet 2 of 6

o

/-201/-2(}2/-203/-204/205/-206/-2()?/-208

US 9,158,628 B2

rgSsg/

584 NetFn | checksum rgSA rqlUN omd Data Bytes | checksum
170 EE— 240
N\

/

7

FIG. 3

U.S. Patent Oct. 13, 2015 Sheet 3 of 6 US 9,158,628 B2

START

410
Compare a block of BIOS chip with /\/
corresponding block of BIOS image in the
memory

oes the block of the

2108 chip have the same content as Yes
the corresponding block of BIOS
mage in the memory?
430

L v/\ﬁi’m

Erase the block of BIOS chip, and write 1
corresponding block of BIOS image in the Skip the block
memory to block

Last block?

Yes

460

/\/

Next block

FIG. 4

US 9,158,628 B2

Sheet 4 of 6

Oct. 13, 2015

U.S. Patent

G Ol

941

8GL
o]
/\/ p| du0
fuiysed sfiewy soig s0id
[2UBIS OldD 52) AN
_ -
| oinpon _ _ :
eepdn | ul] Ad |eg—
veissy | 2019 OB | \/_ _ S0
L |

~

0Bl

8l

98l

ampoy Bopusiea

80RLBIY
SOM

0Gl

b

US 9,158,628 B2

Sheet 5 of 6

Oct. 13, 2015

U.S. Patent

9 'Ol

059 .
0vS]
/\/ \ sbeuj
SO
060 \/u S8
079 o 869 5€9
/\/ // momtﬁcm*
> SOM ” H
STAL /\/ <9
A \/\ -
089
2EY I
glt gLo
¥19 N
1
VV a01g
SOIg |-
/\/ 0LG
N~ 219
] 041 a BInPO
Cgﬁmu:mﬁ&{ Q:\m;u D BARMILLI BIpon s1epdn .Akmﬁgwm.}m
Il SOIg A 3018
el gl okt 9Z1 08l 08 Zeh

US 9,158,628 B2

Sheet 6 of 6

Oct. 13, 2015

U.S. Patent

084 084
- \/\
%m\/ 044
0G4
SoBLISILY
-
45 12372
841l
> “ \|/
- ///L\/ Oy
/\/ 5992
024 0Ls
diuD BINPOIA SINDOR SINPOIN afeuw;
d0 S04 s0id BopuoRaa BEMLIL Al Mm%wﬁ 3014
AN gl QiL 28l 9zl 06l 08l GeL

US 9,158,628 B2

1
BIOS FAILOVER UPDATE WITH SERVICE
PROCESSOR HAVING DIRECT SERIAL
PERIPHERAL INTERFACE (SPI) ACCESS

FIELD

The present disclosure relates generally to basic input/
output system (BIOS) update of a host computer with a ser-
vice processor (SP), and particularly to BIOS failover update
with a SP having direct serial peripheral interface (SPI)
access to the BIOS chip of the host computer.

BACKGROUND

The background description provided herein is for the pur-
pose of generally presenting the context of the disclosure.
Work of the presently named inventors, to the extent it is
described in this background section, as well as aspects of the
description that may not otherwise qualify as prior art at the
time of filing, are neither expressly nor impliedly admitted as
prior art against the present disclosure.

The Basic Input/Output System (BIOS) is one of the most
crucial components on a computer motherboard. The BIOS
firmware is preloaded into a memory (the BIOS memory) of
the BIOS, and typically is the first code run by a computer
when powered on. When the computer starts up, the first job
for the BIOS is the power-on self-test, which initializes and
identifies the system devices such as the CPU, RAM, video
display card, keyboard and mouse, hard disk drive, optical
disc drive and other hardware. The BIOS then locates a boot
loader software held on a peripheral device (designated as a
“boot device™), such as a hard disk or a CD/DVD, and loads
and executes that software, giving it control of the operating
system (OS). This process is known as booting, or booting up,
which is short for bootstrapping.

The BIOS memory for storing the BIOS firmware is gen-
erally a non-volatile chip, such as an EEPROM chip on the
motherboard. Typically, a serial peripheral interface (SPI) bus
is used for the EEPROM chip. In modern computer systems,
contents stored in the BIOS chip can be rewritten without
removing it from the motherboard, allowing the BIOS firm-
ware to be upgraded in place. The rewriting process of the
BIOS firmware is generally referred to as flashing the BIOS.

Generally, a service processor (SP) or a baseboard man-
agement controller (BMC) refers to a specialized microcon-
troller that manages the interface between system manage-
ment software and platform hardware. The SP can be
embedded on the motherboard of a computer, generally a
server. For example, different types of sensors can be built
into the computer system, and the SP reads these sensors to
obtain parameters such as temperature, cooling fan speeds,
power status, operating system (OS) status, etc. The SP moni-
tors the sensors and can send alerts to a system administrator
via the network if any of the parameters do not stay within
preset limits, indicating a potential failure of the system. The
administrator can also remotely communicate with the BMC
to take some corrective action such as resetting or power
cycling the system to get a hung OS running again. The SP
also provides out-of-band (OOB) access to the BIOS.

In a host computer provided with a SP, the SP can be used
for flashing the BIOS. Generally, the SP may control the host
computer to enter a special state to write the BIOS firmware
image to the BIOS chip through the BIOS serial peripheral
interface (SPI). However, in case of corruption to the BIOS
image in the BIOS chip, the BIOS may fail during its execu-

15

25

40

45

2

tion, and the booting of the OS may not happen. There is a
need to update the BIOS firmware image with the SP when
such corruption occurs.

Therefore, an unaddressed need exists in the art to address
the aforementioned deficiencies and inadequacies.

SUMMARY

Certain aspects of the present disclosure direct to a system.
In certain embodiments, the system includes a service pro-
cessor (SP), which includes a processor, a non-volatile
memory, a volatile memory and a system interface. The non-
volatile memory stores computer executable codes are con-
figured to, when executed at the processor: receive, from a
basic input/output system (BIOS) being executed at a central
processing unit (CPU) of a host computer through a system
interface, a BIOS image as a failover backup image, and store
the failover backup image in the volatile memory, wherein the
SP is connected to the host computer via the system interface,
and wherein the SP is connected to a BIOS chip of the host
computer via a serial peripheral interface (SPI); monitor
operation of the BIOS being executed at the CPU of the host
computer by receiving, from the BIOS through the system
interface, a notification signal; detect, based on the notifica-
tion signal, an error in the operation of the BIOS being
executed at the CPU of the host computer; and in response to
detecting the error, send a copy of the failover backup image
to the BIOS chip of the host computer through the SPI to
replace a current BIOS image stored in the BIOS chip of the
host computer with the copy of the failover backup image.

In certain embodiments, the system interface is a standard-
ized interface under an Intelligent Platform Management
Interface (IPMI) standard, wherein the standardized interface
includes a keyboard controller style (KCS) interface, a sys-
tem management interface chip (SMIC) interface, and a block
transfer (BT) interface.

In certain embodiments, the system interface is a universal
serial bus (USB) interface.

In certain embodiments, the SP is a baseboard management
controller (BMC).

In certain embodiments, the codes include: a detection
module configured to receive the notification signal from the
BIOS being executed at the CPU of the host computer
through the system interface, and to detect the error based on
the notification signal. In certain embodiments, the detection
module is configured to detect the error when the detection
module does not receive the notification signal for a prede-
termined period of time.

In certain embodiments, the host computer includes: the
BIOS chip storing the current BIOS image; a memory; and
the CPU, configured to load a copy of the current BIOS image
to the memory and execute the current BIOS image as the
BIOS. The BIOS, when executed at the CPU, is configured to:
retrieve a copy of the current BIOS image from the BIOS
chip, and send the copy of the current BIOS image as the
failover backup image to the SP through the system interface;
and send the notification signal to the SP during the operation
of the BIOS.

In certain embodiments, the BIOS, when executed at the
CPU, is configured to send the copy of the current BIOS
image as the failover backup image to the SP by: generating
a first IPMI original equipment manufacturer (OEM) mes-
sage comprising the copy of the current BIOS image; and
sending the first IPMI OEM message to the SP through the
system interface.

In certain embodiments, the codes are configured to
receive the BIOS image as the failover backup image from the

US 9,158,628 B2

3

BIOS being executed at the CPU of the host computer by:
receiving the first [IPMI OEM message from the BIOS being
executed at the CPU of the host computer through the system
interface; and retrieving the BIOS image from the first IPMI
OEM message.

In certain embodiments, the notification signal is a second
IPMI OEM message.

In certain embodiments, the BIOS, when executed at the
CPU, is further configured to: generate a request for version
information of the failover backup image, and send the
request for the version information of the failover backup
image to the SP through the system interface; receive, from
the SP through the system interface, the version information
of'the failover backup image; and compare the version infor-
mation of the failover backup image to a version information
of the current BIOS image.

In certain embodiments, the codes are configured to:
receive, from the BIOS being executed at the CPU of the host
computer through the system interface, the request for the
version information ofthe failover backup image; in response
to the request for the version information, retrieve the version
information from the failover backup image stored in the
volatile memory; and send the version information to the host
computer through the system interface.

In certain embodiments, the request for the version infor-
mation of the failover backup image is a third IPMI OEM
message, and the version information of the failover backup
image is a fourth IPMI OEM message.

Certain aspects of the present disclosure direct to a method
of failover updating a basic input/output system (BIOS) of a
host computer with a service processor (SP), including:
receiving, at the SP, a failover backup image from the host
computer through a system interface, and storing the failover
backup image in a volatile memory of the SP, wherein the host
computer includes a central processing unit (CPU), a memory
and a BIOS chip storing a current BIOS image, wherein the
CPU is configured to load a copy of the current BIOS image
to the memory and execute the current BIOS image as a
BIOS, wherein the BIOS being executed at the CPU of the
host computer is configured to retrieve a copy of the current
BIOS image from the BIOS chip and send the copy of the
current BIOS image as the failover backup image to the SP
through the system interface, and wherein the SP is connected
to the BIOS chip of the host computer via a serial peripheral
interface (SPI); monitoring, at the SP, operation of the BIOS
being executed at the CPU of the host computer by receiving,
from the BIOS through the system interface, a notification
signal; detecting, at the SP, an error in the operation of the
BIOS being executed at the CPU of the host computer based
on the notification signal; and in response to detecting the
error, sending, by the SP, a copy of the failover backup image
to the BIOS chip of the host computer through the SPI to
replace the current BIOS image stored in the BIOS chip of the
host computer with the copy of the failover backup image.

In certain embodiments, the system interface is a standard-
ized interface under an Intelligent Platform Management
Interface (IPMI) standard, wherein the standardized interface
includes a keyboard controller style (KCS) interface, a sys-
tem management interface chip (SMIC) interface, and a block
transfer (BT) interface.

In certain embodiments, the system interface is a universal
serial bus (USB) interface.

In certain embodiments, the SP is a baseboard management
controller (BMC).

In certain embodiments, the SP includes a detection mod-
ule configured to receive the notification signal from the

10

15

20

25

30

35

40

45

55

60

65

4

BIOS being executed at the CPU of the host computer
through the system interface, and to detect the error based on
the notification signal.

In certain embodiments, the detection module is config-
ured to detect the error when the detection module does not
receive the notification signal for a predetermined period of
time.

In certain embodiments, the SP is configured to receive the
failover backup image from the BIOS being executed at the
CPU of the host computer by: receiving a first IPMI original
equipment manufacturer (OEM) message from the BIOS
being executed at the CPU of the host computer through the
system interface, wherein the first IPMI OEM message is
generated by the BIOS being executed at the CPU of the host
computer and comprises the copy of the current BIOS image;
and retrieving the copy of the current BIOS image as the
failover backup image from the first IPMI OEM message.

In certain embodiments, the notification signal is a second
IPMI OEM message.

In certain embodiments, the method further includes:
receiving, at the SP, a request for the version information of
the failover backup image from the BIOS being executed at
the CPU of the host computer through the system interface; in
response to the request for the version information, retrieving,
at the SP, the version information from the failover backup
image stored in the volatile memory; and sending, from the
SP, the version information to the host computer through the
system interface, wherein the the BIOS being executed at the
CPU of the host computer receives and compares the version
information of the failover backup image to a version infor-
mation of the current BIOS image. In certain embodiments,
the request for the version information of the failover backup
image is a third IPMI OEM message, and the version infor-
mation of the failover backup image is a fourth IPMI OEM
message.

Certain aspects of the present disclosure direct to a non-
transitory computer readable medium storing computer
executable codes. The codes, when executed at a processor of
a service processor (SP), are configured to: receive a failover
backup image from a host computer through a system inter-
face, and storing the failover backup image in a volatile
memory of the SP, wherein the host computer comprises a
central processing unit (CPU), a memory and a BIOS chip
storing a current BIOS image, wherein the CPU is configured
to load a copy of the current BIOS image to the memory and
execute the current BIOS image as a BIOS, wherein the BIOS
being executed at the CPU of the host computer is configured
to retrieve a copy of the current BIOS image from the BIOS
chip and send the copy of the current BIOS image as the
failover backup image to the SP through the system interface,
and wherein the SP is connected to the BIOS chip of the host
computer via a serial peripheral interface (SPI); monitor
operation of the BIOS being executed at the CPU of the host
computer by receiving, from the BIOS through the system
interface, a notification signal; detect an error in the operation
of'the BIOS being executed at the CPU of the host computer
based on the notification signal; and in response to detecting
the error, send a copy of the failover backup image to the
BIOS chip of the host computer through the SPI to replace the
current BIOS image stored in the BIOS chip of the host
computer with the copy of the failover backup image.

In certain embodiments, the system interface is a standard-
ized interface under an Intelligent Platform Management
Interface (IPMI) standard, wherein the standardized interface
includes a keyboard controller style (KCS) interface, a sys-
tem management interface chip (SMIC) interface, and a block
transfer (BT) interface.

US 9,158,628 B2

5

In certain embodiments, the system interface is a universal
serial bus (USB) interface.

In certain embodiments, the SP is a baseboard management
controller (BMC).

In certain embodiments, the codes includes a detection
module configured to receive the notification signal from the
BIOS being executed at the CPU of the host computer
through the system interface, and to detect the error based on
the notification signal. In certain embodiments, the detection
module is configured to detect the error when the detection
module does not receive the notification signal for a prede-
termined period of time.

In certain embodiments, the codes are configured to
receive the failover backup image from the BIOS being
executed at the CPU of the host computer by: receiving a first
IPMI original equipment manufacturer (OEM) message from
the BIOS being executed at the CPU of the host computer
through the system interface, wherein the first IPMI OEM
message is generated by the BIOS being executed at the CPU
of the host computer and comprises the copy of the current
BIOS image; and retrieving the copy of the current BIOS
image as the failover backup image from the first IPMI OEM
message.

In certain embodiments, the notification signal is a second
IPMI OEM message.

In certain embodiments, the codes are further configured
to: receive a request for the version information of the failover
backup image from the BIOS being executed at the CPU of
the host computer through the system interface; in response to
the request for the version information, retrieve the version
information from the failover backup image stored in the
volatile memory; and send the version information to the host
computer through the system interface, wherein the the BIOS
being executed at the CPU of the host computer receives and
compares the version information of the failover backup
image to a version information of the current BIOS image. In
certain embodiments, the request for the version information
of the failover backup image is a third IPMI OEM message,
and the version information of the failover backup image is a
fourth IPMI OEM message.

These and other aspects of the present disclosure will
become apparent from the following description of the pre-
ferred embodiment taken in conjunction with the following
drawings and their captions, although variations and modifi-
cations therein may be affected without departing from the
spirit and scope of the novel concepts of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood
from the detailed description and the accompanying draw-
ings, wherein:

FIG. 1 schematically depicts a computer system according
to certain embodiments of the present disclosure;

FIG. 2 schematically depicts an IPMI message according
to certain embodiments of the present disclosure;

FIG. 3 schematically depicts the BIOS chip storing the
BIOS according to certain embodiments of the present dis-
closure;

FIG. 4 schematically depicts a flowchart of a flashing pro-
cess of the BIOS chip according to certain embodiments of
the present disclosure;

FIG. 5 schematically depicts operation of a watchdog mod-
ule according to certain embodiments of the present disclo-
sure;

30

35

40

45

50

55

60

65

6

FIG. 6 schematically depicts a SP receiving a failover
backup BIOS image from the BIOS of the host computer in
the booting process according to certain embodiments of the
present disclosure; and

FIG. 7 schematically depicts a BIOS failover flashing pro-
cess initiated by the SP when the SP has direct SPI access to
the BIOS chip according to certain embodiments of the
present disclosure.

DETAILED DESCRIPTION

The present disclosure is more particularly described in the
following examples that are intended as illustrative only since
numerous modifications and variations therein will be appar-
ent to those skilled in the art. Various embodiments of the
disclosure are now described in detail. Referring to the draw-
ings, like numbers, if any, indicate like components through-
out the views. As used in the description herein and through-
out the claims that follow, the meaning of “a”, “an”, and “the”
includes plural reference unless the context clearly dictates
otherwise. Also, as used in the description herein and
throughout the claims that follow, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise. Moreover, titles or subtitles may be used in the
specification for the convenience of a reader, which shall have
no influence on the scope of the present disclosure. Addition-
ally, some terms used in this specification are more specifi-
cally defined below.

The terms used in this specification generally have their
ordinary meanings in the art, within the context of the disclo-
sure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are
discussed below, or elsewhere in the specification, to provide
additional guidance to the practitioner regarding the descrip-
tion of the disclosure. For convenience, certain terms may be
highlighted, for example using italics and/or quotation marks.
The use of highlighting has no influence on the scope and
meaning of a term; the scope and meaning of a term is the
same, in the same context, whether or not it is highlighted. It
will be appreciated that same thing can be said in more than
one way. Consequently, alternative language and synonyms
may be used for any one or more of the terms discussed
herein, nor is any special significance to be placed upon
whether or not a term is elaborated or discussed herein. Syn-
onyms for certain terms are provided. A recital of one or more
synonyms does not exclude the use of other synonyms. The
use of examples anywhere in this specification including
examples of any terms discussed herein is illustrative only,
and in no way limits the scope and meaning of the disclosure
or of any exemplified term. Likewise, the disclosure is not
limited to various embodiments given in this specification.

Unless otherwise defined, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art to which this disclosure
pertains. In the case of conflict, the present document, includ-
ing definitions will control.

As used herein, “around”, “about” or “approximately”
shall generally mean within 20 percent, preferably within 10
percent, and more preferably within 5 percent of a given value
or range. Numerical quantities given herein are approximate,
meaning that the term “around”, “about” or “approximately”
can be inferred if not expressly stated.

As used herein, “plurality” means two or more.

As used herein, the terms “comprising,” “including,” “car-

containing,” “involving,” and the like are to

rying,” “haVing,” “«
be understood to be open-ended, i.e., to mean including but
not limited to.

US 9,158,628 B2

7

Asusedherein, the phrase at least one of A, B, and C should
be construed to mean a logical (A or B or C), using a non-
exclusive logical OR. It should be understood that one or
more steps within a method may be executed in different
order (or concurrently) without altering the principles of the
present disclosure.

Asused herein, the term “module” may refer to, be part of,
or include an Application Specific Integrated Circuit (ASIC);
an electronic circuit; a combinational logic circuit; a field
programmable gate array (FPGA); a processor (shared, dedi-
cated, or group) that executes code; other suitable hardware
components that provide the described functionality; or a
combination of some or all of the above, such as in a system-
on-chip. The term module may include memory (shared,
dedicated, or group) that stores code executed by the proces-
sor.

The term “code”, as used herein, may include software,
firmware, and/or microcode, and may refer to programs, rou-
tines, functions, classes, and/or objects. The term shared, as
used above, means that some or all code from multiple mod-
ules may be executed using a single (shared) processor. In
addition, some or all code from multiple modules may be
stored by a single (shared) memory. The term group, as used
above, means that some or all code from a single module may
be executed using a group of processors. In addition, some or
all code from a single module may be stored using a group of
memories.

As used herein, the term “headless system” or “headless
machine” generally refers to the computer system or machine
that has been configured to operate without a monitor (the
missing “head”), keyboard, and mouse.

The term “interface”, as used herein, generally refers to a
communication tool or means at a point of interaction
between components for performing data communication
between the components. Generally, an interface may be
applicable at the level of both hardware and software, and
may be uni-directional or bi-directional interface. Examples
of'physical hardware interface may include electrical connec-
tors, buses, ports, cables, terminals, and other /O devices or
components. The components in communication with the
interface may be, for example, multiple components or
peripheral devices of a computer system.

The terms “chip” or “computer chip”, as used herein, gen-
erally refer to a hardware electronic component, and may
refer to or include a small electronic circuit unit, also known
as an integrated circuit (IC), or a combination of electronic
circuits or ICs.

The present disclosure relates to computer systems. As
depicted in the drawings, computer components may include
physical hardware components, which are shown as solid line
blocks, and virtual software components, which are shown as
dashed line blocks. One of ordinary skill in the art would
appreciate that, unless otherwise indicated, these computer
components may be implemented in, but not limited to, the
forms of software, firmware or hardware components, or a
combination thereof.

The apparatuses and methods described herein may be
implemented by one or more computer programs executed by
one or more processors. The computer programs include pro-
cessor-executable instructions that are stored on a non-tran-
sitory tangible computer readable medium. The computer
programs may also include stored data. Non-limiting
examples of the non-transitory tangible computer readable
medium are nonvolatile memory, magnetic storage, and opti-
cal storage.

FIG. 1 schematically depicts a computer system according
to certain embodiments of the present disclosure. As shown in

25

35

40

45

55

65

8

FIG. 1, the computer system 100 includes a host computer
110 and a service processor (SP) 120. The SP 120 is con-
nected to the host computer 110 via a keyboard controller
style (KCS) interface 150 and a universal serial bus (USB)
interface 155. In certain embodiments, a remote management
computer can be connected to the SP 120 via a network. The
system 100 can be a system that incorporates more than one
interconnected system, such as a client-server network. The
network may be a wired or wireless network, and may be of
various forms such as a local area network (LAN) or wide
area network (WAN) including the Internet. In certain
embodiments, the system 100 may include other physical or
virtual components not shown in FIG. 1.

In certain embodiments, the SP 120 may be connected to
the host computer 110 via only one of the KCS interface 150
and the USB interface 155. For example, the SP 120 may be
connected to the host computer 110 via only the KCS inter-
face 150, or via only the USB interface 155.

In certain embodiments, the SP 120 may be connected to
the host computer 110 via one or more interfaces replacing or
in addition to the KCS interface 150 and the USB interface
155. For example, the BMC 120 may be connected to the host
computer 110 via other typical standardized Intelligent Plat-
form Management Interface (IPMI) system interfaces, such
as a system management interface chip (SMIC) interface or a
block transfer (BT) interface. In certain embodiments, the
SMIC interface and/or the BT interface can be used to replace
one or both of the KCS interface 150 and the USB interface
155. In certain embodiments, data transfer between the host
computer 110 and the SP 120 can be in the format of IPMI
original equipment manufacturer (OEM) messages, and goes
through one of the KCS interface 150 and the USB interface
155.

The host computer 110 may be a computing device, such as
a general purpose computer or a headless computer. Gener-
ally, the host computer 110 includes a baseboard or the
“motherboard” (not shown). The baseboard is a printed cir-
cuit board to which a multitude of components or devices may
be connected by way of a system bus or other electrical
communication paths. Although not explicitly shown in FIG.
1, the components on the baseboard are interconnected, and
the layout of the components on the baseboard and the man-
ner of the interconnection between the components on the
baseboard is herein referred to as the configuration of the
baseboard. One of ordinary skill in the art would appreciate
that the configuration of the baseboard may be adjusted or
changed according to the necessary design or manufacturing
requirements.

The components on the baseboard of the host computer
110 include, but not limited to, a central processing unit
(CPU) 112, a memory 114, a BIOS chip 116, and other
required memory and Input/Output (I/O) modules (not
shown). In certain embodiments, the SP 120 may also be a
component on the baseboard. In certain embodiments, the
CPU 112, the memory 114, and the BIOS chip 116 may be
embedded on the baseboard, or may be connected to the
baseboard through at least one interface. In certain embodi-
ments, the interface may be physical hardware interface such
as electrical connectors, buses, ports, cables, terminals, or
other 1/O devices.

Further, the host computer 110 includes a storage device
118, which stores a plurality of software applications, includ-
ing an operating system (OS) 160. In certain embodiments,
the host computer 110 may include at least one I/O device
(not shown) for generating and controlling input and output
signals of the host computer 110. Examples of the /O device
include keyboards, touch pads, mouse, microphones, display

US 9,158,628 B2

9

screens, touch screens, or other /O devices applicable for the
host computer 110. Some I/O devices, such as touch screens,
are provided for the dual input/output purposes.

The CPU 112 is a host processor which is configured to
control operation of the host computer 110. The host proces-
sor can execute the OS 160 or other applications of the host
computer 110. In certain embodiments, the host computer
110 may run on or more than one CPU as the host processor,
such as two CPUs, four CPUs, eight CPUs, or any suitable
number of CPUs.

In certain embodiments, the CPU 112 is configured to
receive an interrupt, which is an asynchronous signal indicat-
ing the need for attention or a synchronous event in software
indicating the need for a change in execution. Interrupts are a
commonly used technique for computer multitasking, espe-
cially in real-time computing. Generally, an interrupt can be
either a hardware interrupt or a software interrupt. The hard-
ware interrupt causes the CPU 112 to save its state of execu-
tion in the memory 114 and begin execution of an interrupt
handler. The software interrupt is usually implemented as an
instruction in an instruction set, which cause a context switch
to an interrupt handler similar to a hardware interrupt.

Commonly used hardware interrupts can be categorized
into, but not limited to, a maskable interrupt, a non-maskable
interrupt (NMI), an inter-processor interrupt (IPI), and a spu-
rious interrupt. The maskable interrupt, sometimes referred to
as an interrupt request (IRQ), is a hardware interrupt that may
be ignored by setting a bit in an interrupt mask register’s
(IMR) bit-mask. The NMI is a hardware interrupt that lacks
anassociated bit-mask, so that it can never be ignored. The IPI
is a special case of interrupt that is generated by one processor
to interrupt another processor in a multiprocessor system. The
spurious interrupt is a hardware interrupt that is unwanted,
and is typically generated by system conditions such as elec-
trical interference on an interrupt line or through incorrectly
designed hardware.

In certain embodiments, the NMI can be used to trigger the
CPU 112 to enter a safe state. In other words, when the CPU
112 receives an NMI, the CPU 112 enters the safe state. In the
safe state, the CPU 112 is powered for a certain period of time
to save the critical operational information, and is otherwise
non-operational to prevent damage induced by errors. At the
end of the certain period of time, the CPU 112 will receive a
reset signal to reboot the host computer 110.

The memory 114 can be a volatile memory, such as the
random-access memory (RAM), for storing the data and
information during the operation of the host computer 110. In
certain embodiments, the memory 114 is in communication
with the CPU 112 through a system bus (not shown).

The BIOS chip 116 is one of the most crucial components
in the host computer 110 or any computer system. In certain
embodiments, the BIOS chip 116 is a non-volatile memory,
such as a flash memory chip, an electrically erasable pro-
grammable read-only memory (EEPROM) chip or a comple-
mentary metal oxide semiconductor (CMOS) memory. As
shown in FIG. 1, the BIOS chip 116 stores a BIOS image 170
(hereinafter the BIOS 170), an IPMI application 172, and a
flasher module 174.

The BIOS 170 is an image file storing the firmware codes
which, when executed at the CPU 112, are configured to
perform the startup functions, or the booting functions, for the
host computer 110. Examples of the booting functions
include, but are not limited to, the initiation and power-on
self-test, identifying the system devices, locating the boot
loader software on the boot device, loading and executing the
boot loader software and giving it control of the OS 160 in the
protected mode.

10

15

20

25

30

35

40

45

50

55

60

65

10

As described above, the BIOS 170 can perform the startup
or the booting functions. In the booting process, the BIOS 170
performs a power-on self-test operation, which initializes and
identifies the system hardware devices of the host computer
110, such as the CPU 112, the memory 114, the storage device
118, peripheral 1/O devices such as display card, keyboard
and mouse, and other hardware devices. In certain embodi-
ments, the BIOS 170 may identify the storage device 118,
which stores an operating system (OS) 160, as a bootable
device. Once the BIOS 170 completes the self-test operation,
the BIOS 170 then attempts to boot the host computer 110,
i.e., instructs the CPU 112 to read and execute the OS 160
from the bootable device, i.e. the storage device 118 as speci-
fied in the BIOS 170. Typically, the BIOS 170 attempts to load
a boot loader program from the storage device 118. The boot
loader program then loads the OS 160 from the storage device
118. Thus, the CPU 112 can execute the OS 160 and run an
instance of the OS 160. At the end of the booting process, the
control of the computer system is given to the OS 160.

In certain embodiments, after completing the self-test
operation without errors, the BIOS 170 may perform a
failover backup process if the SP 120 does not have a newer
version of the BIOS image 185. In certain embodiments,
when the BIOS 170 completes the self-test operation success-
fully, the BIOS 170 may send a request to the SP 120 asking
for version information of the BIOS image 185 stored in the
SP 120. In certain embodiments, the version information may
be a timestamp showing the time when the BIOS image 185
was generated, or a version identification number indicating
the version of the BIOS image 185. When the SP 120 returns
the version information, the BIOS 170 compares the version
information of the BIOS image 185 with the current version
of'the BIOS 170 stored in the BIOS chip 116. Ifthe BIOS 170
determines that the BIOS image 185 stored in the SP 120 is an
older version than the BIOS 170, the BIOS 170 sends a copy
of'the BIOS 170 stored in the BIOS chip 116 to the SP 120 as
a failover backup image before loading the OS 160. Upon
receiving the copy of the BIOS 170, the SP 120 may store the
copy of the BIOS 170 in the memory 122 to replace the BIOS
image 185. Ifthere is no BIOS image 185 stored in the SP 120,
the SP 120 does not return the version information. When the
BIOS 170 waits for a certain period of time without receiving
the version information from the SP 120, the BIOS 170 deter-
mines that there is no BIOS image stored in the SP 120. The
BIOS 170 then sends a copy of the BIOS 170 stored in the
BIOS chip 116 to the SP 120 as the failover backup image
before loading the OS 160. Upon receiving the copy of the
BIOS 170, the SP 120 may store the copy of the BIOS 170 in
the memory 122 to form the BIOS image 185.

In certain embodiments, the BIOS 170 stored in the BIOS
chip 116 may be corruptive. Thus, when the BIOS 170 is
executed in the booting process to perform the self-test opera-
tion, an error may occur due to the corruption such that the
BIOS 170 cannot proceed with loading the OS 160, and the
booting will fail. In this case, if the SP 120 has a BIOS image
185 available as a failover backup image, the BIOS 170 may
perform a BIOS flashing process by requesting the BIOS
image 185 from the SP 120. In certain embodiments, when
the BIOS 170 detects that an error occurs, the BIOS 170 may
send a request to the SP 120 asking for a copy of the BIOS
image 185. Upon receiving the copy of the BIOS image 185,
the BIOS 170 loads and executes the flasher module 174 to
perform flashing of the BIOS chip 116.

The IPMI application 172 is a computer program that gen-
erates and processes [IPMI messages. In certain embodiments,
when the BIOS 170 is executed at the CPU 112 in the booting
process, the BIOS 170 may send data to the IPMI application

US 9,158,628 B2

11

172 for converting the data between IPMI messages and data
recognizable by the BIOS 170. For example, during the boot-
ing process, the BIOS 170 may generate a notification to be
sent to the SP 120 indicating the condition of the booting
process, i.e. successful booting or error occurring. In order to
send the notification to the SP 120, the BIOS 170 can send
data of the notification to the IPMI application 172. Upon
receiving the data of the notification, the IPMI application
172 converts the data to an IPMI OEM message representing
the notification, and sends the IPMI OEM message back to
the BIOS 170. When the BIOS 170 receive the IPMI OEM
messages from the SP 120 or any other peripheral devices, the
BIOS 170 can send the received IPMI OEM messages to the
IPMI application 172. The IPMI application 172 processes
the IPMI OEM messages to generate data recognizable by the
BIOS 170, and then sends the data back to the BIOS 170 for
further process.

In certain embodiments, the IPMI application 172 is sepa-
rated from the BIOS 170 as an independent program. In
certain embodiments, the IPMI application 172 can be a part
of'the BIOS 170, which is compatible to the IPMI architecture
for generating IPMI messages.

The IPMI messages can be transmitted, translated, bussed,
and wrapped in a variety of fashions. Generally, an IPMI
message can be a request message (generally labeled as “rq”)
or a response message (generally labeled as “rs”), and has a
plurality of fields, including the network function (NetFn)
field, the logical unit number (LUN) field, the sequence num-
ber (Seq#) field, the command (CMD) field, and the data field.

The NetFn field is a six-bit field that describes the network
function of the IPMI message. The IPMI Specification
defines certain predefined categories for the NetFn field, and
there are reserved codes for OEM expansion. For a request
message, the NetFn field is an odd number, and for a response
message, the NetFn field is an even number.

The LUN field is a two-digit logical unit number for sub-
addressing purposes. For low-end integrity servers and com-
puters, the LUN field is always zero.

The Seq# field defines a sequence number in the response
message to identify the response message in response to a
certain request message. In certain embodiments, the value
stored in the Seq# field is the same number as the sequence
number appeared in the CMD field of the request message to
which the response message is in response. As discussed
above, the Seq# field must be provided when the NetFn field
is an even number to indicate the IPMI message as a response
message.

The CMD field includes the commands of the IPMI mes-
sage. When the IPMI message is a request message, the CMD
field includes a sequence number such that a response mes-
sage to the request message may include the same sequence
number in the Seq# field.

The data field includes all data transferred by the IPMI
message. In certain embodiments, the data field of an IPMI
message can be 0 bytes. In other words, an IPMI message may
contain no data field.

FIG. 2 schematically depicts an IPMI message according
to certain embodiments of the present disclosure. As shown in
FIG. 2, each block of the IPMI message 200 refers to a field,
which may have a different length. The IPMI message 200
includes a plurality of fields, such as the rs slave address
(rsSA) field 201, the NetFn field 202, the rq slave address
(rgSA) field 204, the rq Seq# (rqSeq)/rqLUN field 205, the
command field 206, and the data field 207. Further, a plurality
of checksum fields 203 and 208 are included for checksum

10

15

20

25

30

35

40

45

50

55

60

65

12

verification purposes. As discussed above, the data field 207
may contain 0 bytes of data (i.e. no data field) or more than
one byte of data.

In certain embodiments, IPMI OEM messages are used for
data transaction purposes between the BIOS 170 and the SP
120. When the IPMI application 172 processes data to be
transferred to the SP 120 to generate an IPMI OEM message,
the data can be stored in the data field 207 of the IPMI OEM
message as shown in FIG. 2.

The flasher module 174 is a program to perform flashing of
the BIOS image 170 stored in the BIOS chip 116. In certain
embodiments, flashing ofthe BIOS 170 can be performed due
to a newer BIOS image 185 available in the SP 120, or due to
an error occurring during the booting process. When the
BIOS 170 receives a BIOS image for flashing the BIOS chip
116, the BIOS 170 calls the flasher module 174 to perform the
flashing process, the flasher module 174 receives instructions
from the BIOS 170 and performs flashing functions to flash
the BIOS chip 116. In certain embodiments, the flasher mod-
ule 174 can be a part of the BIOS 170. In certain embodi-
ments, the flasher module 174 can be an independent program
separated from the BIOS 170.

In certain embodiments, the flasher module 174 may be
stored in a storage media other than the BIOS chip 116. In
certain embodiments, the flasher module 174 may be stored in
the storage device 118 of the host computer 110. In certain
embodiments, the flasher module 174 may be stored as a part
of'the firmware 126 in the SP 120 such that the SP 120, instead
of'the BIOS 170, may execute the flasher module 174.

As discussed above, the BIOS chip 116 is a non-volatile
memory such as a flash memory chip. Typically, the flash
memory stores information in an array of memory cells made
from floating-gate transistors, which is different in its nature
from other volatile or non-volatile memory because the infor-
mation or data stored therein must be erased before new data
can be written to the memory cells. There are two main types
of flash memory: the NAND type and the NOR type, which
are respectively named after the NAND and NOR logic gates.
The flash memory is divided into in logical blocks. Each
block can vary in size, where the most common is 128 KB. In
the majority of NAND flash devices each block is made of 64
pages of 2 KB each. A page is divided in two regions: the data
area, and the spare area used for memory management pur-
poses. Pages are divided in sector units (or chunks) of 512
byte to emulate the popular sector size (ibid). The block is the
smallest erasable unit while the page is the smallest program-
mable unit.

FIG. 3 schematically depicts the BIOS chip storing the
BIOS according to certain embodiments of the present dis-
closure. As shown in FIG. 3, the BIOS chip 116 includes a
plurality of logical blocks 210, and data of the BIOS 170 is
stored in a number of the blocks 210. In certain embodiments,
data of the BIOS 170 may be distributed between the blocks
210. In other words, each block 210 may include some data of
the BIOS 170 and some empty memory space. It should be
appreciated that FIG. 3 shows the blocks 210 in the matrix
form solely for the illustration purposes, and the actual
memory allocation of the blocks 210 of the BIOS chip 116
may be different.

In certain embodiments, the flasher module 174 utilizes a
flash driver (or flash translation layer) to read and write data
to the BIOS chip 116. For example, under a Linux system, the
executed flasher module 174 generally accesses the flash
memory of the BIOS chip 116 through the memory technol-
ogy device (MTD) subsystem. In certain embodiments, the
executed flasher module 174 can mount a file system on top of
the MTD subsystem. The flash driver of the MTD subsystem

US 9,158,628 B2

13

operates a block 210 as the smallest erasable unit. In certain
embodiments, a block 210 can have a size of 128K (=131072)
bytes. In an erasing or rewriting operation, data in one block
210 must be erased before new data can be rewritten to any
sector of the block 210. When a file system is mounted on top
of the MTD subsystem, the file system uses sectors (not
shown in FIG. 3A) as the basic memory units. The size of a
sector is generally 512 or 1024 bytes. A block contains a
number of sectors. Data can be written into one or more
sectors of a block. Examples of the file system include ext2,
ext3, XFS, JFS, FAT, or any other suitable file systems.

FIG. 4 schematically depicts a flashing process of the BIOS
chip according to certain embodiments of the present disclo-
sure. In certain embodiments, the BIOS 170 has saved a copy
of replacement BIOS image in the memory 112, and executes
the flasher module 174 to perform the flashing process.

At procedure 410, when the flashing process starts, the
flasher module 174 compares one block 210 of the BIOS chip
116 with a corresponding block of the BIOS image stored in
the memory 112 to determine whether the two blocks are the
same (e.g., include the same content). At procedure 420, if the
flasher module 174 determines that the two blocks are differ-
ent, the flasher module 174 enters procedure 430. If the two
blocks are the same, the flasher module 174 enters procedure
440. At procedure 430, the flasher module 174 erases the
block 210 of the BIOS chip 116, and writes the corresponding
block ofthe replacement BIOS image to the erased block 210.
Atprocedure 440, the flasher module 174 skips the block 210.
In other words, the block 210 of the BIOS chip 116 is not
changed if the contents stored in the block 210 are the same to
the corresponding block of the BIOS image stored in the
memory 112.

After completing a block 210 of the BIOS chip 116, at
procedure 450, the flasher module 174 checks if that just
compared block 210 is the last block of the BIOS chip 116. If
the block 210 is the last block, the flashing process is com-
pleted. If there are other blocks waiting to be operated, the
flasher module 174 enters procedure 460 to go back to pro-
cedure 410 to operate on the next block 210. In this way, the
flasher module 174 processes through all the blocks 210 of the
BIOS chip 116. When the flashing process is completed, the
flasher module 174 may return control to the BIOS 170, and
the BIOS 170 may restart the host computer 110.

The storage device 118 is a non-volatile data storage media
for storing the OS 160, the IPMI application 172, and other
applications of the host computer 110. Examples of the stor-
age device 118 may include flash memory, memory cards,
USB drives, hard drives, floppy disks, optical drives, or any
other types of data storage devices.

The OS 160 can be collective management software man-
aging the operation of the host computer 110. For example,
the OS 160 can include a set of functional programs that
control and manage operations of the devices connected to the
host computer 110. The set of application programs provide
certain utility software for the user to manage the host com-
puter 110. In certain embodiments, the OS 160 is operable to
multitask, i.e., execute computing tasks in multiple threads,
and thus may be any of the following: MICROSOFT COR-
PORATION’s “WINDOWS 95, “WINDOWS CE,” “WIN-
DOWS 98 “WINDOWS 2000” or “WINDOWS NT”,
“WINDOWS Vista,”, “WINDOWS 7.” and “WINDOWS 8,”
operating systems, IBM’s OS/2 WARP, APPLE’s MACIN-
TOSH OSX operating system, LINUX, UNIX, etc. In certain
embodiments, the OS 160 can also be compatible to the IPMI
architecture for generating IPMI messages in order to com-
municate with the SP 120.

25

40

45

50

55

14

The SP 120 is a specialized microcontroller that manages
the interface between system management software and plat-
form hardware. In certain embodiments, the SP 120 may be a
baseboard management controller (BMC). Different types of
sensors can be built into the host computer 110, and the SP
120 reads these sensors to obtain parameters such as tempera-
ture, cooling fan speeds, power status, OS status, etc.

The SP 120 monitors the sensors and can send out-of-band
(OOB) alerts to a system administrator of the host computer
110 if any of the parameters do not stay within preset limits,
indicating a potential failure of the host computer 110. In
certain embodiments, the administrator can also remotely
communicate with the SP 120 from a remote management
computer via a network to take remote action to the host
computer. For example, the administrator may reset the host
computer 110 from the remote management computer
through the SP 120, and may obtain system information of the
host computer 110 OOB without interrupting the operation of
the host computer 110.

As shown in FIG. 1, the SP 120 includes a processor 121,
a memory 122 and a non-volatile memory 124. In certain
embodiments, the SP 120 is also connected to the BIOS chip
116 of the host computer 110 directly through a SPI1 158 such
that the SP 120 has direct SPI access to the BIOS chip 116
through the SPI 158. In certain embodiments, the SP 120 may
include other components, such as at least one I/O device (not
shown).

The processor 121 controls operation of the SP 120. The
processor 121 can execute the firmware 126 or other codes
stored in the SP 120. In certain embodiments, the SP 120 may
run on or more than one processor.

The memory 122 can be a volatile memory, such as the
RAM, for storing the data and information during the opera-
tion of the SP 120. When the SP 120 restarts, the contents
stored in the memory 122 will be lost.

In certain embodiments, the memory 122 is configured to
store a copy of BIOS image 185. The BIOS image 185 is a
copy of BIOS image file storing in the memory 122 of the SP
120. In certain embodiments, the BIOS image 185 contains
the version information of the BIOS image 185. In certain
embodiments, the version information may be a timestamp
showing the time when the BIOS image 185 was generated, or
a version identification number indicating the version of the
BIOS image 185.

Incertain embodiments, the SP 120 receives the copy of the
BIOS image 185 as a failover backup image from the host
computer 110, and store the BIOS image in the memory 122.

The non-volatile memory 124 stores the firmware 126 of
the SP 120. The firmware 126 of the SP 120 includes com-
puter executable codes for performing the operation of the SP
120. As shown in FIG. 1, the firmware 126 of the SP 120
includes, among other things, a BIOS update module 180, a
watchdog module 182, and an IPMI module 190. In certain
embodiments, the firmware 126 may include a web connec-
tion module (not shown) for communication with the network
such that the administrator of the computer system may con-
nect to the SP 120 remotely from a remote management
computer via the network.

The BIOS update module 180 controls the transmission of
the BIOS image between the SP 120 and the host computer
110 via the system interface, such as the KCS interface 150 or
the USB interface 155. In certain embodiments, when the
BIOS 170 sends a request for the version information of the
BIOS image 185 to the SP 120, the BIOS update module 180
may retrieve version information of the BIOS image 185 from
the memory 122, and send version information of the BIOS
image 185 to the firmware 126 such that the firmware 126

US 9,158,628 B2

15
may send the version information to the BIOS 170 at the host
computer 110 for comparing of the version of the BIOS
images. In certain embodiments, when the BIOS 170 sends a
request to the BIOS update module 180 for the BIOS image
185, the BIOS update module 180, in response to the request,
retrieves a copy of the BIOS image 185 from the memory 122,
and sends the copy ofthe BIOS image 185 to the firmware 126
such that the firmware 126 may send the copy of the BIOS
image 185 to the BIOS chip 116 to replace the BIOS 170
stores in the BIOS chip 116. In certain embodiments, when
the BIOS 170 sends a copy of the BIOS 170 to the SP 120, the
firmware 126 receives the copy of the BIOS 170 and sends the
copy of the BIOS 170 to the BIOS update module 180. The
BIOS update module 180 then saves the copy of the BIOS 170
in the memory 122 to replace or to form the BIOS image 185.

In certain embodiments, the error occurs in the booting
process may be critical that the BIOS 170 stops operating
with no capability of retrieving the copy of the BIOS image
185 from the SP 120 to flash the BIOS chip 112. In this case,
if the SP 120 is connected to the BIOS chip 116 of the host
computer 110 through the SPI 158, the watchdog module 182
may trigger the CPU 112 of the host computer 110 to enter the
safe state, and then instruct the BIOS update module 180 to
perform flashing of the BIOS 170 directly through the SPI
158. In this case, the BIOS update module 180 provides
similar functionalities of the flasher module 174 at the host
computer 110. The flashing process performed by the BIOS
update module 180 is described with reference to FIG. 4, and
is hereinafter not repeated.

The watchdog module 182 is a monitoring program to
detect and recover malfunctions of the host computer 110. As
discussed above, the host computer 110 may have different
types of sensors built therein, and the watchdog module 182
of'the SP 120 may read these sensors to obtain parameters and
conditions of the operation of the host computer 110. In
certain embodiments, the watchdog module 182 may be used
to monitor the operation of the BIOS 170 in the booting
process of the host computer 110. When an error occurs in the
booting process, the watchdog module 182 may send alerts to
the administrator of the system indicating a potential failure
of the system.

In certain embodiments, the watchdog module 182 can be
an electronic timer program with a predetermined period of
time. The watchdog timer constantly receives notification
signals from the host computer 110 to restart the watchdog
timer in order to prevent the timer from elapsing or timing out.
The act of restarting a watchdog timer of the watchdog mod-
ule 182 is sometimes referred to as “kicking the dog,” and the
notification signal to restart the watchdog timer may be
referred to as a “kick” signal. For example, during normal
operation of the booting process, the BIOS 170 may regularly
send kick signals to the SP 120 to restart the watchdog timer
of the watchdog module 182. If an error occurs during the
booting process, the BIOS 170 stops processing with the
follow-up booting procedures. Thus, the BIOS 170 will not
continue sending the kick signal to the SP 120 to restart the
watchdog timer of the watchdog module 182. When the
watchdog timer elapses, the watchdog module 182 may gen-
erate a timeout signal to initiate certain corrective actions to
the error of the BIOS 110.

In certain embodiments, the watchdog module 182 can
have a variety of configurations, which is subject to altering.
For example, the watchdog module 182 can be one or more
timers, and each timer of the watchdog module 182 is gener-
ally referred to as a stage. In other words, a single-stage
watchdog module has one single timer, and a multi-stage
watchdog module has multiple timers. For a multi-stage

10

15

20

25

30

40

45

50

55

60

65

16

watchdog module, each stage or each timer may have a dif-
ferent predetermined period of time.

FIG. 5 schematically depicts operation of a watchdog mod-
ule according to certain embodiments of the present disclo-
sure. As shown in FIG. 5, the watchdog module 182 is a
single-stage watchdog program having a timer 186. In certain
embodiments, the watchdog module 182 can be a multiple-
stage watchdog program having a plurality of timers.

During the regular operation of the booting process, the
BIOS 170 controls the CPU 112 to regularly send the kick
signal to the SP 120. Specifically, the kick signal can be sent
in the IPMI OEM message format to the SP 120 through the
KCS interface 150. It should be appreciated that the IPMI
OEM message can be sent to the SP 120 through the USB
interface 155 or any other system interfaces.

Upon receiving the kick signal within the predetermined
period of time, the timer 186 of the watchdog module 182
restarts without sending out any timeout signals. When an
error occurs during the booting process, the BIOS 170 stops
processing, and the CPU 112 stops sending the kick signal to
the SP 120, causing the timer 186 to elapse. When the timer
186 elapses, the timer 186 sends out a timeout signal to the
BIOS update module 180 and to the CPU 112. In certain
embodiments, the timeout signal can be a NMI. Specifically,
the watchdog module 182 may send the NMI timeout signal
as a general purpose input/output (GPIO) signal to the CPU
112 of the host computer 110.

When the CPU 112 receives the NMI timeout signal, the
CPU 112 enters the safe state. At the same time, the watchdog
module 182 sends a timeout signal to invoke the BIOS update
module 180. In certain embodiments, the timeout signal to
invoke the BIOS update module 180 can be merely a timeout
signal and not a NMI. Upon receiving the timeout signal, the
BIOS update module 180 starts the flashing process of the
BIOS chip 116 of the host computer 110 through the SPI 158.
In certain embodiments, the BIOS update module 180 may
wait for a certain period of time to give the CPU 112 time to
save the critical operational information, such as writing an
error message to a log file.

When the BIOS update module 180 completes the flashing
process, the BIOS update module 180 sends a restart signal to
the CPU 112 to restart the host computer 110. Specifically, the
BIOS update module 180 may send the restart signal as a
GPIO signal to the CPU 112 of the host computer 110.

The IPMI module 190 is a program of the SP 120 to
generate and process IPMI messages. In certain embodi-
ments, when the firmware 126 of the SP 120 generates data to
be transferred to the host computer 110 under the IPMI archi-
tecture, the firmware 126 sends the data to the IPMI module
190. Upon receiving the data, the IPMI module 190 converts
the datato corresponding IPMI OEM messages, and sends the
IPMI OEM messages back to the firmware 126 such that the
firmware 126 may send the IPMI OEM messages to the host
computer 110. When the firmware 126 receives IPMI OEM
messages from the host computer 110 or any other IPMI
compatible devices, the firmware 126 sends the received
IPMI OEM messages to the IPMI module 190. The IPMI
module 190 processes the IPMI OEM messages to generate
data recognizable by the firmware 126, and then sends the
data back to the firmware 126 for further process. In certain
embodiments, the IPMI module 190 can be a similar program
to the IPMI application 172 at the host computer 110.

Currently, almost all firmware of SP’s or BMC’s available
in the market supports the IPMI architecture, and provide a
variety of IPMI modules 190. In certain embodiments, the
IPMI module 190 can be a part of the firmware 126, which is
compatible to the IPMI architecture for generating IPMI mes-

US 9,158,628 B2

17

sages. In certain embodiments, the IPMI module 190 is sepa-
rated from the firmware 126 as an independent program.

In certain embodiments, IPMI OEM messages are used for
data transaction purposes between the BIOS 170 and the SP
120. When the IPMI module 190 processes data to be trans-
ferred to the host computer 110 to generate an IPMI OEM
message, the data can be stored in the data field 447 of the
IPMI OEM message as shown in FIG. 2.

The KCS interface 150 is a standardized interface often
used between a SP and a payload processor in the IPMI
architecture. IPMI is an industry standard for system moni-
toring and event recovery. The IPMI specification provides a
common message-based interface for accessing all of the
manageable features in a compatible computer. IPMI
includes a rich set of predefined commands for reading tem-
perature, voltage, fan speed, chassis intrusion, and other
parameters. System event logs, hardware watchdogs, and
power control can also be accessed through IPMI. In this
manner, IPMI defines protocols for accessing the various
parameters collected by a SP through an operating system or
through an external connection, such as through a network or
serial connection. Additional details regarding IPMI can be
found in the IPMI Specification (Version 2.0), which is pub-
licly available from INTEL, CORPORATION, and which is
incorporated herein by reference.

In certain embodiments, in addition to the standard pre-
defined commands and parameters, IPMI allows OEM exten-
sions for the manufacturers and users to define OEM specific
commands. A user may use [PMI OEM messages to control
data transmission via the KCS interface 150. The IPMI OEM
messages may be used for the data transaction between the
host computer 110 and the SP 120. In certain embodiments,
the IPMI OEM messages may include the specific data to be
transferred, or the request for the specific data.

The USB interface 155 is an industry standardized inter-
face under the USB industry standard that defines the cables,
connectors and communications protocols used in a bus for
connection, communication, and power supply between com-
puters and electronic devices. In certain embodiments, the
USB interface 155 is a USB port.

USB has effectively replaced a variety of earlier interfaces,
such as serial and parallel ports, as well as separate power
chargers for portable devices. Currently, USB allows bi-di-
rectional communications between the host computer 110
and the SP 120, as USB 3.0 allows for device-initiated com-
munications towards the host.

In certain embodiments, the USB interface 155 may be
used to transfer IPMI OEM messages between the host com-
puter 110 and the SP 120. In certain embodiments, when the
SP 120 is connected to the host computer 110 via the USB
interface 155, the OS 160 may request and receive a plurality
of USB descriptors from the SP 120 through the USB inter-
face 130. Based on information of the USB descriptors, the
OS 160 may recognize the BMC 120 as the specific USB
human interface device (HID) device, and recognize a pre-
defined format of a USB HID report for transferring data to
the specific HID device (i.e. the BMC 120). In certain
embodiments, the USB HID report is in the predefined format
based on the information of the USB descriptors with the
IPMI OEM messages embedded therein. Thus, the IPMI
OEM messages can be transferred between the host computer
110 and the SP 120 through the USB interface 155 by trans-
ferring the USB HID reports with the IPMI OEM messages
embedded therein.

In certain embodiments, the SP 120 receives the copy of the
BIOS image 185 as a failover backup image from the host
computer 110, and store the BIOS image in the memory 122.

10

15

20

25

30

35

40

45

50

55

60

65

18

FIG. 6 schematically depicts a SP receiving a failover
backup BIOS image from the BIOS of the host computer in
the booting process according to certain embodiments of the
present disclosure. At procedure 610, the host computer 110
starts booting. At procedure 612, the CPU 112 loads a copy of
the BIOS 170 from the BIOS chip 116. At procedure 614, the
CPU 112 saves the copy of the BIOS 170 in the memory 114
and executes the BIOS 170. At procedure 616, the BIOS 170,
when executed at the CPU 112, performs the booting process,
such as the power-on self-test operation for initializing and
identifying the system hardware devices of the host computer
110.

When the BIOS 170 finishes the booting process without
generating any error, the BIOS 170 may send a copy of the
BIOS image 170 stored in the BIOS chip 116 to the SP 120 as
a failover backup image. At procedure 620, the BIOS 170
finishes the booting process without generating any error. At
procedure 622, the BIOS 170 sends a copy of the BIOS image
170 to the IPMI application 172 for processing. Upon receiv-
ing the copy of the BIOS image 170, at procedure 625, the
IPMI application 172 converts the copy of the BIOS image
170 to generate the IPMI OEM message. At procedure 628,
the IPMI application 172 sends the IPMI OEM message back
to the BIOS 170.

At procedure 630, the BIOS 170 sends the IPMI OEM
message representing the copy of the BIOS image 170 to the
SP 120 through the KCS interface 150. It should be appreci-
ated that the IPMI OEM message can be sent to the SP 120
through the USB interface 155 or any other system interfaces.

When the SP 120 receives the IPMI OEM message repre-
senting the copy ofthe BIOS image 170, at procedure 632, the
firmware 126 of the SP 120 sends the IPMI OEM message to
the IPMI module 190 for processing. Upon receiving the
IPMI OEM message, at procedure 635, the IPMI module 190
converts the IPMI OEM message to generate the copy of the
BIOS image 170, which is recognizable by the firmware 126.
Atprocedure 638, the IPMI module 190 sends the copy of the
BIOS image 170 back to the firmware 126.

Upon receiving the copy of the BIOS image 170, at proce-
dure 640, the firmware 126 calls the BIOS update module
180. At procedure 650, the BIOS update module 180 stores
the received copy of the BIOS image 170 in the memory 122
to form the BIOS image 185 as a failover backup image. In
certain embodiments, when the memory 122 already has a
BIOS image 185 stored therein, the BIOS update module 180
replaces the BIOS image 185 with the received BIOS image
file 145. In certain embodiments, the BIOS image 185 con-
tains the version information.

In certain embodiments, the SP 120 has the capability to
direct access to the SPI 158 and directly connect to the BIOS
chip 116 of the host computer 110. Further, during a previous
booting process of the host computer 110, the SP 120 has
stored a copy of the BIOS image 185 in the memory 122 as a
failover backup image from the host computer 110. In this
case, the SP 120 may monitor the booting process of the host
computer 110 with the watchdog module 182. When the
watchdog module 182 detects an error in the booting process
of the host computer 110, the SP 120 may initiate a flashing
process of the BIOS chip 116 directly through the SPI 158.
For example, the BIOS 170 in the booting process may
encounter a major error due to corruption of the BIOS 170 in
the BIOS chip 116. The error causes the BIOS 170 to fail the
booting process and to lose its interaction with the SP 120. In
this case, the BIOS 170 cannot initiate the flashing process.
Thus, the watchdog module 182 of the SP 120 may initiate a
flashing process through the SPI 158 in order to replace the
corruptive BIOS image 170 in the BIOS chip 116.

US 9,158,628 B2

19

FIG. 7 schematically depicts a BIOS failover flashing pro-
cess initiated by the SP when the SP has direct SPI access to
the BIOS chip according to certain embodiments of the
present disclosure. In certain embodiments, the BIOS image
185 stored in the SP 120 is a failover backup image obtained
from the host computer 110 during a previous booting pro-
cess, as described with reference to FIG. 7. In certain embodi-
ments, the watchdog module 182 of the SP 120 is a single-
stage watchdog program as described with reference to FIG.
5.

As described above, the watchdog module 182 monitors
the operation of the booting process at the host computer 110.
The monitoring process of the watchdog module 182 is per-
formed by receiving the kick signals constantly from the
BIOS 170 of the host computer 110, which has been
described with reference to FIG. 5. If an error occurs during
the booting process, the BIOS 170 stops processing with the
follow-up booting procedures. Thus, the BIOS 170 will not
continue sending the kick signal to the SP 120 to restart the
watchdog timer of the watchdog module 182. At procedure
710, when the timer 186 of the watchdog module 182 elapses,
the timer 186 generates a timeout signal for the CPU 112 and
the BIOS update module 180.

At procedure 720, the watchdog module 182 may send the
timeout signal as a general purpose input/output (GPIO) sig-
nal to the CPU 112 of the host computer 110 to trigger the
CPU 112 to enter the safe state.

At procedure 730, the watchdog module 182 sends the
timeout signal to the BIOS update module 180 to initiate the
flashing process. It should be appreciated that, although FIG.
7 shows that the watchdog module 182 sends the timeout
signal to the CPU 112 (procedure 720) and to the BIOS
update module 180 (procedure 730) in separate procedures,
the watchdog module 182 sends out the timeout signal simul-
taneously to the CPU 112 and to the BIOS update module
180. In other words, the CPU 112 and to the BIOS update
module 180 may process simultaneously. In certain embodi-
ments, before initiating the flashing process, the BIOS update
module 180 may wait for a certain period of time, e.g., 5
seconds, to give the CPU 112 time to save the critical opera-
tional information, such as writing an error message to a log
file.

At procedure 740, in response to the timeout signal, the
BIOS update module 180 checks the BIOS image 185 stored
in the memory 122, and at procedure 745, the BIOS update
module 180 retrieves a copy of the BIOS image 185 stored in
the memory 122. At procedure 750, the BIOS update module
180 sends the copy of the BIOS image 185 back to the firm-
ware 126.

At procedure 760, the firmware 126 instructs the BIOS
update module 180 to perform flashing of the BIOS chip 116
with the BIOS image 185 through the direct access of SPI
158. The process of flashing the BIOS chip 116 has been
described with reference to FIG. 4, and is hereinafter not
repeated.

When the flashing process is complete, the BIOS update
module 180 returns control to the firmware 126, and at pro-
cedure 770, the firmware 126 generates a restart signal to
restart the host computer 110. At procedure 780, the firmware
126 sends the restart signal to the CPU 112 to trigger the CPU
112 to reboot with the new BIOS image 170 in the BIOS chip
116. At procedure 790, the CPU 112 restarts the host com-
puter 110.

The foregoing description of the exemplary embodiments
of the disclosure has been presented only for the purposes of
illustration and description and is not intended to be exhaus-

10

15

20

25

30

35

40

45

50

55

60

65

20

tive or to limit the disclosure to the precise forms disclosed.
Many modifications and variations are possible in light of the
above teaching.

The embodiments were chosen and described in order to
explain the principles of the disclosure and their practical
application so as to enable others skilled in the art to utilize
the disclosure and various embodiments and with various
modifications as are suited to the particular use contemplated.
Alternative embodiments will become apparent to those
skilled in the art to which the present disclosure pertains
without departing from its spirit and scope. Accordingly, the
scope of the present disclosure is defined by the appended
claims rather than the foregoing description and the exem-
plary embodiments described therein.

What is claimed is:
1. A system, comprising:
a service processor (SP), comprising a processor, a non-
volatile memory, a volatile memory and a system inter-
face, wherein the non-volatile memory stores computer
executable codes are configured to, when executed at the
processot,
receive, from a basic input/output system (BIOS) being
executed at a central processing unit (CPU) of a host
computer through a system interface, a BIOS image
as a failover backup image, and store the failover
backup image in the volatile memory, wherein the SP
is connected to the host computer via the system inter-
face, and wherein the SP is connected to a BIOS chip
of the host computer via a serial peripheral interface
(SPI);

monitor operation of the BIOS being executed at the
CPU of the host computer by receiving, from the
BIOS through the system interface, a notification sig-
nal;

detect, based on the notification signal, an error in the
operation of the BIOS being executed at the CPU of
the host computer; and

in response to detecting the error, send a copy of the
failover backup image to the BIOS chip of the host
computer through the SPI to replace a current BIOS
image stored in the BIOS chip of the host computer
with the copy of the failover backup image.

2. The system as claimed in claim 1, wherein the system
interface is a standardized interface under an Intelligent Plat-
form Management Interface (IPMI) standard, wherein the
standardized interface comprises a keyboard controller style
(KCS) interface, a system management interface chip
(SMIC) interface, and a block transfer (BT) interface.

3. The system as claimed in claim 1, wherein the system
interface is a universal serial bus (USB) interface.

4. The system as claimed in claim 1, wherein the SP is a
baseboard management controller (BMC).

5. The system as claimed in claim 1, wherein the codes
comprise:

a detection module configured to receive the notification
signal from the BIOS being executed at the CPU of the
host computer through the system interface, and to
detect the error based on the notification signal.

6. The system as claimed in claim 5, wherein the detection
module is configured to detect the error when the detection
module does not receive the notification signal for a prede-
termined period of time.

7. The system as claimed in claim 1, wherein the host
computer comprises:

the BIOS chip storing the current BIOS image;

a memory; and

US 9,158,628 B2

21

the CPU, configured to load a copy of the current BIOS
image to the memory and execute the current BIOS
image as the BIOS;

wherein the BIOS, when executed at the CPU, is config-

ured to

retrieve a copy of the current BIOS image from the BIOS
chip, and send the copy of the current BIOS image as
the failover backup image to the SP through the sys-
tem interface; and

send the notification signal to the SP during the opera-
tion of the BIOS.

8. The system as claimed in claim 7, wherein the BIOS,
when executed at the CPU, is configured to send the copy of
the current BIOS image as the failover backup image to the SP
by:

generating a first IPMI original equipment manufacturer

(OEM) message comprising the copy of the current
BIOS image; and

sending the first [IPMI OEM message to the SP through the

system interface.

9. The system as claimed in claim 8, wherein the codes are
configured to receive the BIOS image as the failover backup
image from the BIOS being executed at the CPU of the host
computer by:

receiving the first IPMI OEM message from the BIOS

being executed at the CPU of the host computer through
the system interface; and

retrieving the BIOS image from the first IPMI OEM mes-

sage.

10. The system as claimed in claim 7, wherein the notifi-
cation signal is a second IPMI OEM message.

11. The system as claimed in claim 7, wherein the BIOS,
when executed at the CPU, is further configured to:

generate a request for version information of the failover

backup image, and send the request for the version infor-
mation of the failover backup image to the SP through
the system interface;
receive, from the SP through the system interface, the
version information of the failover backup image; and

compare the version information of the failover backup
image to a version information of the current BIOS
image.

12. The system as claimed in claim 11, wherein the codes
are configured to:

receive, from the BIOS being executed at the CPU of the

host computer through the system interface, the request
for the version information of the failover backup image;
in response to the request for the version information,
retrieve the version information from the failover
backup image stored in the volatile memory; and

send the version information to the host computer through

the system interface.

13. The system as claimed in claim 11, wherein the request
for the version information of the failover backup image is a
third IPMI OEM message, and the version information of the
failover backup image is a fourth IPMI OEM message.

14. A method of failover updating a basic input/output
system (BIOS) of a host computer with a service processor
(SP), comprising:

receiving, at the SP, a failover backup image from the host

computer through a system interface, and storing the
failover backup image in a volatile memory of the SP,
wherein the host computer comprises a central process-
ing unit (CPU), a memory and a BIOS chip storing a
current BIOS image, wherein the CPU is configured to
load a copy of the current BIOS image to the memory
and execute the current BIOS image as a BIOS, wherein

15

20

25

40

45

22

the BIOS being executed at the CPU of the host com-
puter is configured to retrieve a copy of the current BIOS
image from the BIOS chip and send the copy of the
current BIOS image as the failover backup image to the
SP through the system interface, and wherein the SP is
connected to the BIOS chip of the host computer via a
serial peripheral interface (SPI);

monitoring, at the SP, operation of the BIOS being

executed at the CPU of the host computer by receiving,
from the BIOS through the system interface, a notifica-
tion signal;

detecting, at the SP, an error in the operation of the BIOS

being executed at the CPU of the host computer based on
the notification signal; and
inresponse to detecting the error, sending, by the SP, a copy
of'the failover backup image to the BIOS chip of the host
computer through the SPI to replace the current BIOS
image stored in the BIOS chip of the host computer with
the copy of the failover backup image.
15. The method as claimed in claim 14, wherein the system
interface is a standardized interface under an Intelligent Plat-
form Management Interface (IPMI) standard, wherein the
standardized interface comprises a keyboard controller style
(KCS) interface, a system management interface chip
(SMIC) interface, and a block transfer (BT) interface.
16. The method as claimed in claim 14, wherein the system
interface is a universal serial bus (USB) interface.
17. The method as claimed in claim 14, wherein the SP is
a baseboard management controller (BMC).
18. The method as claimed in claim 14, wherein the SP
comprises a detection module configured to receive the noti-
fication signal from the BIOS being executed at the CPU of
the host computer through the system interface, and to detect
the error based on the notification signal.
19. The method as claimed in claim 18, wherein the detec-
tion module is configured to detect the error when the detec-
tion module does not receive the notification signal for a
predetermined period of time.
20. The method as claimed in claim 14, wherein the SP is
configured to receive the failover backup image from the
BIOS being executed at the CPU of the host computer by:
receiving a first IPMI original equipment manufacturer
(OEM) message from the BIOS being executed at the
CPU of the host computer through the system interface,
wherein the first IPMI OEM message is generated by the
BIOS being executed at the CPU of the host computer
and comprises the copy of the current BIOS image; and

retrieving the copy of the current BIOS image as the
failover backup image from the first IPMI OEM mes-
sage;

wherein the notification signal is a second IPMI OEM

message.

21. The method as claimed in claim 14, further comprising:

receiving, at the SP, a request for the version information of

the failover backup image from the BIOS being
executed at the CPU of the host computer through the
system interface;

in response to the request for the version information,

retrieving, at the SP, the version information from the
failover backup image stored in the volatile memory;
and

sending, from the SP, the version information to the host

computer through the system interface, wherein the the
BIOS being executed at the CPU of the host computer
receives and compares the version information of the
failover backup image to a version information of the
current BIOS image;

US 9,158,628 B2

23

wherein the request for the version information of the
failover backup image is a third IPMI OEM message,
and the version information of the failover backup image
is a fourth IPMI OEM message.
22. A non-transitory computer readable medium storing
computer executable codes, wherein the codes, when
executed at a processor of a service processor (SP), are con-
figured to:
receive a failover backup image from a host computer
through a system interface, and storing the failover
backup image in a volatile memory of the SP, wherein
the host computer comprises a central processing unit
(CPU), a memory and a BIOS chip storing a current
BIOS image, wherein the CPU is configured to load a
copy of the current BIOS image to the memory and
execute the current BIOS image as a BIOS, wherein the
BIOS being executed at the CPU of'the host computer is
configured to retrieve a copy of the current BIOS image
from the BIOS chip and send the copy of the current
BIOS image as the failover backup image to the SP
through the system interface, and wherein the SP is
connected to the BIOS chip of the host computer via a
serial peripheral interface (SPI);
monitor operation of the BIOS being executed at the CPU
of the host computer by receiving, from the BIOS
through the system interface, a notification signal;

detect an error in the operation of the BIOS being executed
atthe CPU ofthe host computer based on the notification
signal; and

in response to detecting the error, send a copy of the

failover backup image to the BIOS chip of the host
computer through the SPI to replace the current BIOS
image stored in the BIOS chip of the host computer with
the copy of the failover backup image.

23. The non-transitory computer readable medium as
claimed in claim 22, wherein the system interface is a stan-
dardized interface under an Intelligent Platform Management
Interface (IPMI) standard, wherein the standardized interface
comprises a keyboard controller style (KCS) interface, a sys-
tem management interface chip (SMIC) interface, and a block
transfer (BT) interface.

24. The non-transitory computer readable medium as
claimed in claim 22, wherein the system interface is a univer-
sal serial bus (USB) interface.

25. The non-transitory computer readable medium as
claimed in claim 22, wherein the SP is a baseboard manage-
ment controller (BMC).

5

10

15

30

35

40

45

24

26. The non-transitory computer readable medium as
claimed in claim 22, wherein the codes comprise a detection
module configured to receive the notification signal from the
BIOS being executed at the CPU of the host computer
through the system interface, and to detect the error based on
the notification signal.
27. The non-transitory computer readable medium as
claimed in claim 26, wherein the detection module is config-
ured to detect the error when the detection module does not
receive the notification signal for a predetermined period of
time.
28. The non-transitory computer readable medium as
claimed in claim 22, wherein the codes are configured to
receive the failover backup image from the BIOS being
executed at the CPU of the host computer by:
receiving a first IPMI original equipment manufacturer
(OEM) message from the BIOS being executed at the
CPU of the host computer through the system interface,
wherein the first IPMI OEM message is generated by the
BIOS being executed at the CPU of the host computer
and comprises the copy of the current BIOS image; and

retrieving the copy of the current BIOS image as the
failover backup image from the first IPMI OEM mes-
sage;

wherein the notification signal is a second IPMI OEM

message.

29. The non-transitory computer readable medium as
claimed in claim 22, wherein the codes are further configured
to:

receive a request for the version information of the failover

backup image from the BIOS being executed at the CPU
of the host computer through the system interface;

in response to the request for the version information,

retrieve the version information from the failover
backup image stored in the volatile memory; and

send the version information to the host computer through

the system interface, wherein the the BIOS being
executed at the CPU of the host computer receives and
compares the version information of the failover backup
image to a version information of the current BIOS
image;

wherein the request for the version information of the

failover backup image is a third IPMI OEM message,
and the version information of the failover backup image
is a fourth IPMI OEM message.

#* #* #* #* #*

